TensorFlow は、機械学習向けに開発されたエンドツーエンドのオープンソース プラットフォームです
TensorFlow を利用すると、エキスパートはもちろん初心者でも機械学習モデルを簡単に作成できます。まずは以下の各セクションをご覧ください。
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)
エキスパート向け
サブクラス化 API は、高度な研究に適した Define-by-Run インターフェースを提供します。モデル用のクラスを作成してから、フォワードパスを命令的に記述します。カスタムレイヤ、アクティベーション、トレーニング ループは簡単に記述できます。以下の「Hello World」の例を実行したら、チュートリアルで詳細を確認してください。
class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.conv1 = Conv2D(32, 3, activation='relu') self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(10, activation='softmax') def call(self, x): x = self.conv1(x) x = self.flatten(x) x = self.d1(x) return self.d2(x) model = MyModel() with tf.GradientTape() as tape: logits = model(images) loss_value = loss(logits, labels) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables))
よくある問題への解決策
プロジェクトの参考になるステップバイステップ チュートリアルをご覧ください。

Keras による ML の基本
はじめてのニューラル ネットワーク
スニーカーやシャツなど、身に着けるものの画像を分類するニューラル ネットワークをトレーニングします。短時間で終えられるこのチュートリアルを通じて、TensorFlow プログラムの全体像を大まかに把握することができます。

